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Phase Diagrams of Ising Models on Husimi Trees 
II. Pair and Multisite Interaction Systems 
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We continue an earlier study of multisite interaction Ising spin models on 
Husimi trees. In particular, attention is given to systems with both a nearest- 
neighbor pair interaction and three-site interactions. We use our calculations of 
the phase diagrams of the systems on Husimi trees as approximations of systems 
with the same interactions but on a regular lattice, e.g., the triangle lattice. 
Specific models where exact results are available are used as test cases. All of the 
work involves computation of quantities, such as the magnetization, by iterative 
processes. Hence we are dealing with a discrete map and for certain values 
of the interaction strengths we obtain for the magnetization diagram results 
involving period doubling, chaos, period-three windows, etc., all phenomena of 
recent interest in connection with dynamical systems and now associated with 
certain Ising spin systems. 

KEY WORDS: Ising spin; Baxter-Wu model; Husimi trees; dynamical 
systems; multisite interactions. 

1. i N T R O D U C T I O N  

In  an earlier paper  (1) (hereafter referred to as I) we showed how the 

calculat ion of the magnet iza t ion  of multisi te interact ion (hereafter MSI)  
Ising spin models on  Husimi  trees gives rise to iterative equations.  These 

models, where the thermal  average of the spin on the central  site can be 
calculated exactly by the use of iterative equations,  were shown to be of 

interest both because one is able to investigate a variety of recently studied 
phenomena  such as the effect of frustrat ion and  these systems give good 
approximat ions  to the phase diagrams of Ising model  systems with MSIs 
on more  realistic lattices such as the square and  t r iangular  lattice. The 
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approximations of these phase diagrams are particularly good when com- 
pared with the mean-field approximations, which have been shown to have 
difficulty approximating MSI systems. 

In I the models presented were denoted as pure MSI systems because 
pair interactions were not present. However, many Ising spin systems used 
as models for various physical phenomena, such as the model for 
amphiphiles proposed by Widom (2/ and the model for lipid bilayers 
proposed by Scott, (3/have both pair and MSIs. For this reason we present 
here some results on what will be called mixed interaction systems. In 
particular we will look at systems with two and three site interactions plus 
the external magnetic field. 

In this paper we investigate three mixed interaction systems. In 
Section 2 we present the first system, a Husimi tree system used to 
approximate an Ising model on a Kagom6 lattice with pair and three-site 
interactions. For this case there are exact results by Wu and Wu (4) which 
are used as a test to gauge the accuracy of the approximation. Next, in 
Section 3, we return to the system presented in I whose central site 
magnetization exhibited the full bifurcation cascade, chaos, etc., but we 
now include pair interactions and investigate their effect. In Section 4 we 
again investigate a system where some exact results are available for the 
case where only a three-site interaction is present, the Baxter-Wu model, (5) 
and where there has been a variety of approximation methods employed to 
obtain the phase diagram when pair interactions are also present. (6-1~ As 
we will see, the comparison of our approximation of this model with pre- 
vious approximations will point out the importance of the choice of an 
appropriate basic building block of the Husimi tree used to approximate 
the system as well as the impact of boundary conditions even when looking 
at a site deep within the tree. 

2. ISING SPIN SYSTEM ON KAGOMr LATTICE 

Very recently Wu and Wu (4) obtained some exact results for a mixed 
interaction system. In particular they considered an Ising spin system on a 
Kagom6 lattice with Hamiltonian 

9r176 --J3E ai~:ak--J2 s r E ai 
A n . n .  i 

(1) 

where the first sum is over all triangular faces of the lattice, the second sum 
is over all nearest-neighbor pairs, and the third sum is over all sites. This 
model they related to an eight-vertex model on the hexagonal lattice and 
this they showed is equivalent to an Ising model in an external field and 
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having nearest-neighbor interactions again on the hexagonal lattice. Since 
exact results are known for this last system, exact results are obtained for 
the original model. 

One general approach to constructing an Ising spin model on a 
Husimi tree where two- and three-site interactions are present is to take as 
our basic building block a triangle consisting of three Ising spins one on 
each corner of the triangle. The zeroth-generation system consists of just 
this basic building block. For  the first-generation system we attach 7 -  1 
triangles at each of the two upper sites of a new base triangle (see Fig. la, 
where 7 = 3). Then, continuing this process, we take 7 - 1  first-generation 
branches and attach them to each of the upper sites of a new triangle, given 
us a second-generation branch (see Fig. lb). We continue in this manner 
until the final step, where we take 7, ( n -  1)th-generation branches and 
attach them to each other at their base site. We denote the spin at this site 
as a0. In this way each site, except those on the boundary, are directly 
involved in the same number  of interactions, e.g., for the pair interactions 

(a) 

(b) 

Fig. 1. (a) The first-generation branch of a Husimi tree system used to approximate the 
system of Wu and Wu. (4) (b) A second-generation branch for the same system. The change 
in the size of the triangle for various layers is done only for simplicity in illustration and 
represents no change in interaction strengths. 
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present each site has the same coordination number. Following the method 
of I, we can calculate the thermal average of the base site ( a o )  as 

a ( z , )  ~ - 1 
( a o )  - a ( z , ) 7  + 1 (2) 

where 

a2bZc(zn_  1)2{~- 1) + 2 a ( z , _  1) ~ -  1 AV C 

Zn- -  a2(Zn 1)2(~-1) + 2 a c ( z , _ l )  7 -1  + b  2 (3) 

and where a = e 2/~h, b = e 2t~J2, c = e 2~s3, and fl = 1 / k T .  Equations (2) and (3) 
are counterparts of Eqs. (7) and (8) of I. As in I, the phase diagram is 
determined by the properties of the rational map given by (3). 

Now for an approximation of the Kagom6 lattice we want to let 7 = 2. 
Wu and Wu found the critical surface in the u, v, and w space, where they 
defined u = e  ~h, ~)=e-4flJ2, and w = e  -2~s3. For ease of comparison we 
take three slices through this space, one at v =0.05, another at v=0.10,  
and finally one at v = 0.15. Also, there is a symmetry present in this model, 
which shows we need only look at u t> 1.0 (this symmetry is present in our 
approximation as well). This symmetry indicates that the magnetization 
remains unchanged when h --* - h ,  i.e., u --* l / u ,  and J3 --* - J 3 ,  i.e., w --, 1/w. 
The presence of this symmetry indicates that Eq. (7) of ref. 4 must contain 
an error, since as written the equation does not reflect this symmetry. The 
first term should be v3w 2 rather than vZw2. (tl) The comparisons for the 
three values of v are shown in Fig. 2. In all three cases the results of the 
approximation closely match the exact results. Note that, as is often the 
case where MSIs are present, phase transitions occur at h # 0. 

For  the special c a s e  J3  = 0, i.e., c = 1, the map has a fixed point at 
z =  I when h =0.  One can see this by inspection of Eq. (3). This fixed point 

,1 w 
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(a) (b) (c) 

Fig. 2. Compar ison  of Husimi tree approximation with exact results of ref. 4. (a) v = 0.05, (b) 
v = 0.10, and (c) v = 0.15. The solid line (dashed line) represents the results of approximation 
(exact results). 



i s i n g  M o d e l s  o n  H u s i m i  T r e e s  1 1 8 9  

for high temperature T, that is, small/~J2, is a stable fixed point, meaning 
that { a o ) =  0 at h = 0. However, as we lower T, that is, raise /3J 2 and 
hence b, at some value the fixed point becomes unstable and it is just 
this value of flJ2 which gives the critical point. This point can be found 
analytically and occurs at b = x / 5 .  For  this special situation, J 3 = 0 ,  
mean-field theory gives/~J2 = 1/4, the standard Cayley tree approach with 
coordination number equal to 4 gives /~J2 = 0.3466, and our Husimi tree 
approach gives /3J2=(1/4) ln(5)=0.4024.  The exact result is flJ2 = 
(1/4) 1n(3 + 2 2 . 3 ) = 0 . 4 6 6 6 .  Therefore, compared to other closed-form 
approximations of flJ2, the results are an improvement. It should also be 
mentioned that Wu and Wu conjecture that phase transitions occur in no 
other regions of the u - v - w  space. Our numerical computations support this 
conjecture. 

It is of some interest to examine the mathematical mechanisms which 
cause a jump in the value of the fixed point and therefore result in a 
discontinuity of {Go). In T we found a first-order phase transition for a 
system of the variety just described with the specific values of 7 = 3, J2 = 0, 
and J3 > 0. Here the discontinuity in the value of the fixed point and hence 
the discontinuity of the order parameter was caused by one of the stable 
fixed points vanishing as the magnetic field h is increased (see Fig. 3). This 

1.0 

Y~ 

1.0 

/ / ' ,  
, ~rA , 1.0 . . . .  > Z 

1 . 0  5 . 0  
(a )  

J. ~ ~ ~ ' ~> Z 
1 0 (b) 5.0 

Fig. 3. (a) A plot of y = z  and y=g(z) for 7=3, J2=0, J3=0.8, and h=0.22, with the 
insert being a blowup of the region around the stable fixed point z = A. (b) A similar plot, but 
for h = 0.30. 
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Fig. 4. A plo t  of y = z and  y = g(z) for 7 = 2, Jz = 0.7489, J3 = 0.3466, and  h = -0 .20 ,  wi th  

the inser t  be ing a b l o w u p  a round  the s table  fixed po in t  z = A. (b) A s imi lar  plot,  bu t  for 

h = - 0 . 1 0  aga in  wi th  insert.  

is to be contrasted with the case studied here with 7 = 2, J2 > 0, and no 
restriction on J3. In this case, as shown in Fig. 4, the boundary between the 
basins of attraction of fixed points A and B moves from z > 1 at h = -0 .2  
to z <  1 at h = -0.1.  Since with free boundary conditions one starts the 
iterations of Eq. (3) with z = 1, as h is varied one moves from one basin of 
attraction to the other, causing a discontinuity of the order parameter. 
Hence we have two very different mathematical  mechanisms causing first- 
order phase transitions. 

3. ISING SPIN SYSTEM ON TRIANGLE LATTICE WITH y = 3  

If one lets 7 = 3 in Eqs. (2) and (3) rather than ~ = 2, the plots of (ao>  
vs. h and hence the phase diagram change dramatically. The 7 = 3 case can 
be used to approximate a triangle lattice with J3 interactions on all down- 
pointing or up-pointing triangles but not both. As we showed in I for the 
case where there was no pair interactions, if J3 < 0, one obtains plots of 
(O-o> vs. h showing full "period-bubbling" bifurcations, chaos, period-three 
windows, etc. The reason for this is that we have the presence of frustration 
effects. If we set J3 = - 1  and vary the temperature as we did in I, then for 
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large T one gets no phase transitions and ( a o )  is simply a monotonically 
increasing function of h for h > 0. If we lower T, at some point we find that 
there is a single bubble in the plot of ( ~ o )  vs. h. Hence, rather than period- 
doubling, we have what has been denoted by Bier and Bountis (1~ as 
"period-bubbling." Physically, for small h the interaction J3 dominates, 
while for large h, h dominates. In the intermediate region we have 
the bubble (see I). As we continue to lower T, new bubbles form as part 
of the old bubbles, and for still lower T's we reach a region where for 
intermediate values of h we have chaos. 

The question we want to address in this section is, what effect does the 
introduction of n.n. pair interactions J2 have on the plots of ( a 0 )  vs. h? 
The plots themselves are the best indicators of this and we show in Fig. 5-8 
a series of such plots. Specifically, we use Figs. 6b and 7a as our reference 
point, since in these cases J2 = 0. In this case J3 = - 1  and we set T =  0.3, 
which is low enough to cause the plot of ( 0 o )  vs. h to show a full period- 
bubbling cascade, with regions of the h axis where one has chaos, period- 
three windows, etc. In our sequence of figures we let the value of J2 vary 
from 0.3 (Fig. 5a) to - 1 . 0  (Fig. 8c). For  the extreme values J2 =0.3 and 
J2 -= -1 .0  the pair interaction, due to its strength, has eliminated the 
frustration effects. As Fig. 5a shows, with J2 = 0.30 we have a single first- 
order phase transition. However, the transition does not occur at h = 0 as 
it must for J2 > 0 and J3 = 0. The effect of J3 is to shift the phase transition 
to a point where h > 0. Now as J2 is lowered in value toward J2 = 0 the 
frustration effects increase. However, while the period bubbling begins to 
appear, it is now what might be categorized as "chopped period-bubbling," 

-1.0 

iI 
1'.0 § 
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Fig. 5. 

1!, (o-,~ (a)  

-110 0 ~,0 I -+-- r >h 

(b) 

Plot of (~o) versus h for 7=3, ]3 = --].0, T=0.30, and (a) J2 =0.30, (b) J2=0.20. 
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(b) 

Fig. 6. Plot of <a0> versus h for 7=3 ,  J3=  -1.0, T=0.30, and (a) J2=0.10, (b) J2=0.0. 

(a) 
I -:I 

(b) -~ ~ _ _  

' ' - i  ~.~ ! ' 

�9 , l , ~ h  

/f 

b>h 

Fig. 7. Plot of <a0> versus h for 7=3.0, J 3 = - l . 0 ,  T=0.30, and (a) J2=0.0, 
(b) J2 = -0.20, (c) J2 = --0.040. 
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Fig. 8. Plot of (Go) versus h for 7=3.0, J 3 = - 1 . 0 ,  T=0.30, and (a) J2 = -0.60, 
(b) J2 = -0.80, (c) J2 = - l .00.  

as best illustrated in Fig. 5b, where the left segment of the large bubble is 
missing. 

In Fig. 7a we again show the case where J2 = 0. Then in Figs. 7b and 
7c and Figs. 8a-8c we lower ,/2 from - 0 . 2  to - 1.0. Here again as we make 
,/2 more antiferromagnetic the pair interaction lessens the frustration effect 
of-/3. With ,/2 = -1 .0  we have reached a point where we move from a 
region for large negative h field, where we have a fixed point, to, for h 
closer to zero, a stable 2-cycle as found by Thompson (12) for the 
antiferromagnetic n.n. pair interaction system on the standard Cayley tree. 

4. THE BAXTER-WU MODEL AND ITS GENERALIZATIONS 

Another of the very small number of lattice spin systems with MSIs 
where exact results have been obtained is known as the Baxter-Wu model. 
It consists of a triangular lattice with three-site interactions on all 
elementary triangles of the lattice. As shown by Baxter and Wu, (5) there is 
a phase transition at h = 0 and the critical point is given by sinh(2/?J3)= 1. 
This is to be contrasted with an MSI system discussed in I which consisted 
of a lattice spin system again on a triangular lattice with three-site interac- 
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tions only on all down-pointing or up-pointing basic triangles of the lattice 
but not both. Then one has a phase transition generally at h ~ 0 and only 
for T =  0 does the phase transition occur at h = 0. Hence there is a sharp 
contrast between the two systems. This contrast will manifest itself in the 
need to choose a different basic building block for approximation of the 
Baxter-Wu model. 

It may seem natural to approximate the Baxter-Wu model with the 
same Husimi tree system as used in I and Section 3, with a single triangle 
consisting of three sites as the basic building block, but now with J2 = 0 
and ~=6 .  However, this is not an appropriate choice. This system 
produces a phase diagram similar to that found with Ja = 0  and 7 = 3 
as presented in I, where it was used to approximate the system of the 
preceding paragraph. This reflects the fact that these Husimi tree 
systems approximate regular lattice systems which have only a one-element 
translationally-invariant family of bonds in the sense of Slawny3 TM 

To reflect the fact that in the Baxter-Wu model we have three-site 
interactions on both up-pointing and down-pointing triangles, we can select 
a basic building block which consists of a diamond-shaped system made up 
of two triangles (see Fig. 9a). Using this as our basic building block and 
again denoting the basic building block as the zeroth-generation system, we 
construct a first-generation system by attaching 7 - 1 basic building blocks 
only at the upper site of the new diamond-shaped base building block, (see 
Fig. 9b, where 7 = 3). We continue in this manner until the final step, where 
we take one (n + 1)th-generation system and to its bot tom site we attach 
( 7 - 1 ) ,  nth-generation systems (see Fig. 9c). In this manner the top and 
bottom sites of the basic building blocks now have 7 blocks attached, 

(a) (b) (c) 

Fig. 9. (a) The zeroth-generation diamond-shaped building block. (b) A first-generation 
system. (c) The final symmetric system. The symbol --~--represent n th-generation branches. 
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except of course for those basic building blocks on the boundary of the 
tree. 

One can again rather easily obtain equations similar to Eqs. (2) and 
(3) for the previous system, which allows one to calculate (~ro). For  
approximating the triangle lattice one takes 7 = 6. Doing so, one finds a 
line of phase transitions at h = 0 with a critical point given by flJ3 = 0.4812. 
The results of Baxter and Wu show//J3 = 0.4407. Thus, one sees that for 
the Baxter-Wu model at h = 0, the change of basic building blocks results 
in a qualitatively correct phase diagram and one quantitatively within 10 % 
of the exact result. 

As mentioned earlier, there are a number of approximations of the 
Baxter-Wu model for h-r 0 as well as h = 0. The model has been studied 
by mean-field theory, (6) the interface method, (7) the renormalization group 
approach, ~8) the variational method of Baxter, (9) and by Monte Carlo 
techniques. (1~ At T =  0 analysis indicates a transition at h = - 6 J 3  between 
a state with all spins pointing down to one with a down spin on two lattice 
sites of each elementary triangle and the remaining site having an up spin. 
Hereafter this will be denoted as ( + - - ) .  Therefore, rather than looking 
at <ao>, it is appropriate to look at (~ro +~rl +a2>  =3m, where 0, 1, and 
2 are the three sites of a triangle as in Fig. 9b or 9c. For T =  0, then, one 
has for h <  - 6 J  3 that m =  - 1 ,  while for - 6 J 3 < h < 0  one has m =  -1 /3 ,  
and finally for h > 0, m -- 1. For  small T, in particular T = 0.05 and J3 = l ,  
our Husimi tree approximation results in rn as shown in Fig. 10a. We see 
the first-order transition mentioned above at h---0. Also, one can see an 
abrupt change in the value of m from - 1 to - 1/3 in the vicinity of h = -6 .  
However, there is no true phase transition, either a first- or second-order 
transition at k 4 = 0. Hence the model is not sensitive enough to replicate the 
phase transition at h e 0 ,  which is supposed to be a second-order 
transition. 

The emphasis of the preceding sections of this paper has been on 
mixed interaction systems, i.e., those with both pair interactions and MSIs. 
One can easily generalize the Baxter-Wu model by adding a nearest 
neighbor pair interaction J2. References 6-10 have looked at this 
generalized system and have found approximate phase diagrams as the 
strength of J2 is varied. If we define r = J3/J2 and we take J3 > 0 and J2 > 0, 
then at T =  0 for r > 3/2 we have three phases. For  large, positive h we have 
all spins up, for large, negative h we have all spins down, and for inter- 
mediate h we have the ( + - - )  configuration. For  0 < r < 3/2 the ground 
state undergoes only the transition from all spins up to all spins down as 
h is lowered in value. The T =  0 analysis in ref. 9 gives as a function of r 
the locations on the h axis where the transitions are to take place. 

To approximate the generalized Baxter-Wu model, our diamond- 

822/67/5-6-23 
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Fig. 10. The three-site magnet lzanon  m versus h for the d iamond-shaped building block 

system. (a) 7 = 6, T=0 .05 ,  J3 = 1.0, and J2 = 0.0. (b) 7 = 6, T =  0.05, J3 = 1.0, and J2 = 1.0. 

shaped basic building block has added to it n.n. pair interactions of 
strength J2- For  r = 1 and T =  0.05 the model gives a transition from the 
basically spin-down configuration to the spin-up configuration, as it should 
for low T (see Fig. 10b). However, the transition occurs at approximately 
h = -0.67,  while it should occur at approximately h = -2.0.  At T =  0 the 
transition should occur at exactly h = - 2 ,  yet for our present treatment a 
T =  0 analysis shows that the transition occurs at h- -  -2 /3 .  

At this point we need to consider in more detail various aspects of 
how we arrive at the recursion relation, the equation similar in nature to 
Eq. (3), but for the diamond-shaped building block case, where now we 
need not only ( a o ) ,  but also ( a l )  and ( a2 ) .  As previously stated, all top 
and bottom sites of the diamond-shaped building blocks have 7 triangles 
attached to them except those on the boundary. Since we want to be able 
to 'calculate ( a 0 ) ,  the thermal average of the base site of the central 
diamond and ( a a )  or ( a2 ) ,  the thermal average of the side sites of the 
central diamond, ( a l ) =  ( a z )  by symmetry, we must keep track of four 
terms. We denote A n (Dn) to account for the nth-generation branch with 
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both spins + ( - )  and B. (C.) to account for the nth-generation branch 
with the bottom site + ( - )  and the side site - (+ ) .  We have 

An = 3~4  2 "~ 1 2 y--1 a o  cz , ,  l + a  b z , , _ l + a Z b % + a b c  (4a) 

2 7--1  2 7- -1  B,, = a bz,,_ 1 + ac z,,_ 1 +abc  + b2c (4b) 

3 2 7- -1  2 7--1 a 2 C . = a  b c z . _ l  + a  b c z . - *  + +abc  (4c) 

2 y - - I  2 y - - I  ab c z . _  1 + D . = a bcz ~_ 1 + abc2 + b4 (4d) 

where 

A n _ l  + Bn_l  (5) 
zn I C~ l + D n - 1  

and where a, b, and c are as defined following Eq. (3). Then when 
completing the Husimi tree as described above we obtain 

y--1 a ( A .  + B n ) z ~ _ I - ( C .  + D . )  
( ~ n ) n + l  -- a(A,, + B,,)z~5 ] + (C,, + D,,) (6) 

a ( A .  7- i - B . ) z . _ I  + ( C . - D . )  

( a l ) . + 1  - a (A .  + B.)z]211 + (C.  + D . )  (7) 

For  the above equations, each elementary triangle has a J3 interaction, 
each n.n. pair has a J2 interaction, and each site has a full h field present. 
But each site should not have a full h field associated with it for correct 
T =  0 behavior. 

To emphasize how various h-field contributions can come about, we 
focus attention on what was done in the computation of Eqs. (4)-(7). Here 
we started with a single building block and assumed there is a full h field 
on each of the three upper sites to compute At,  B1, C1, and DI. The 
bottom site h-field is taken into account when we construct the second- 
generation branch, where again we will take account of a full h field on 
the three upper sites of the basic building block. The uppermost site is 
where the first-generation branch is attached, and therefore the h-field 
contribution of the bottom site of the first-generation branch is taken into 
account when constructing the second-generation branch. We continue in 
this manner until we complete the tree. At this point the missing h-field 
term is taken care of by the factor a found in both Eqs. (6) and (7). Thus 
we end with a system with a full h field on each site. 

To see how one might go about the construction of a slightly different 
expression for the calculation of ( a l ) . + 1  and ( a o ) . + l ,  one could note 
that since each top and bottom site of a diamond (except boundary sites) 
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is connected to 7 triangles, one can divide up the contribution of the h field 
on these sites by this factor. Hence we associate with each top or bottom 
site of a diamond this h/v-field term. As we build up our full symmetric 
Husimi tree (as in Fig. 9c), each of these sites then gets eventually a full 
h-field term except those which are the boundary sites; these have only 
hi7. However, as a number of authors have pointed out, (14-16) for the 
standard Cayley tree or Bethe lattice the number of boundary sites grows 
exponentially as the tree is expanded, so the boundary sites never become 
insignificant. The same occurs here with these Husimi tree systems. 

To be consistent, the side sites must also be reconsidered. They are 
boundary sites as well because no attachment is made to them. However, 
since each side site is shared among two triangles, the h-field contribution 
they receive should be 2h/7. None of these considerations arise regarding 
the approximation of a pair interaction system by the standard Bethe 
lattice approach (17) because in this case phase transitions occur only at 
h = 0 .  

With this adjustment the Husimi tree approximation of the systems 
with r < 3/2 is qualitatively correct and in addition reasonably good quan- 
titatively for the first-order transitions resulting from transitions between 
states with predominately up spins to states with predominately down 
spins as is the case for r = 1. For  T =  0 the locations of these transitions are 
exactly where they should be. However, for the case of r > 3/2 and small 
temperatures we have first-order transitions from the (+  - - )  state to the 
( +  + + ) state but not at the correct h value for T =  0. 

Thus, by taking into account the differences between the placement of 
sites in our Husimi tree construction as it pertains to the h-field contribu- 
tions, we have improved our approximation, but we should not stop here. 
The n.n. pair interactions are really of two types--type A, those on the 
sides of the diamond; and type B, those across the center of the diamond- 
shaped building blocks. At our points of contact between the building 
blocks we need 7 = 6 to meet the criteria of having six J3 interactions of the 
connecting site. But this then means there are twelve J2 interactions at a 
site. We should set each of these at a value of J2/2 since each n.n. pair inter- 
action is shared between two triangles in the triangle lattice we are trying 
to approximate. Now the type B n.n. interactions in our Husimi tree con- 
struction are already shared by two triangles, so no adjustment in their 
value is need; they remain Jz- 

With this final refinement for all values of r the first-order phase 
transitions occur for T =  0 at their proper h values and for nonzero T the 
line of first-order phase transitions in the h-T plane is in reasonable quan- 
titative agreement and definite qualitative agreement with all other forms of 
approximation mentioned previously. See Fig. 11 for comparison of the 
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Fig. 11. Approximations of the phase diagram of the generalized Baxter-Wu model with 
r=l .0 .  The dotted line is the Monte Carlo result, II~ the dashed line the variational 
approximation,, (9~ the dot-dash line the mean-frield results, (6) and the solid line the Husimi 
tree approximation result. 

r = 1 case with mean-field, Monte Carlo, and variational method results. It 
would be a significant improvement to find a basic building block which 
would result in a system giving better approximation to the line of second- 
order phase transitions present. We have not been successful in finding 
such a situation. For  the full range of r values the phase diagrams are quite 
varied and it should be pointed out that some of the other approximation 
schemes previously referred to have also had qualitative problems in regard 
to exhibiting correct phase diagrams. For example, the interface method (7) 
can only locate second-order phase transitions and both the mean-field (6) 
and variational approach (9/ show phase transitions for small h > 0 which, 
while not rigorously proven not to exist, are not seen in other approxima- 
tions. Also, both these approximations have, where lines of second-order 
transitions are supposed to appear, first-order transitions. The jumps in 
magnetization for the variational approach are small in magnitude and get 
smaller as higher approximations are made, so that it is argued that the 
infinite-order case would yield second-order transitions. 
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